Algebra 2 Regents Review Packet #4

The radical expression $\sqrt[3]{135x^4y^8}$ can be simplified to

(1) $45xy^2\sqrt[3]{x}$

- (3) $3xy^2\sqrt[3]{27xy}$
- 3xy2 \$ 5xy2

- (2) $5x^2y\sqrt[3]{3y^2}$
- $(4) \ 3xy^2 \sqrt[3]{5xy^2}$

Which of the following is equivalent to $ai^7 + bi^{16} - ci^{21}$, where a, b, and c are real numbers and $i = \sqrt{-1}$?

- (1) a + (b-c)i
- (3) (a+c)i-b a(-i)+b(i)-c(i)

- (2) b (a + c)i
- (4) a b + ci
- b-i (a+c)

-ai +b - ci

The function f(x) is quadratic with the solutions to f(x) = 0 being $x = -2 \pm 3i$. Which of the following graphs could represent f(x)? 2 Imaginary Roots

(1)

(3)

(2)

(4)

For which of the following values of b will the equation $4x^2 + bx + 7 = 0$ have real solutions? cross x-axis!

(V)b=5

(2) b = 9

(Y) 230° $(2) -230^{\circ}$ 1300

(35 430" (70")

(A) -310° (50°)

If $f(x) = 10\sin(2x) + 8$ then $f(\frac{\pi}{4}) = ?$ $f(\frac{\pi}{4}) = 10\sin(2x) + 8 = 18$

RADIAN 3 GOM

(1) $4\sqrt{2}$

(3)18

(2) 8

(4) $28\sqrt{3}$

The volume of water in a tank varies periodically. At t = 0 it is at its maximum of 650 gallons and at t = 5it is at its minimum of 120 gallons. Which of the following functions would best model the volume of water in this tank as a function of time in hours?

 $(2)V = -770\sin(10t) + 385$

 $(3)V = -385\cos(5t) + 265$

(4) $V = 265 \sin\left(\frac{\pi}{10}t\right) + 770$

If a sequence is defined by $c_1 = 15$ and $c_n = c_{n-1} + 4$ then what is the value of the 20th term of this sequence?

(1)80

(3)95

1 = 4 15, 19, 23... Aeith. $a_0 = a_1 + (n-1)$

(2)91

(4) 101

an= a, + (n-1) d azo = 15 + 19(4) = 91

Place the following quadratic function in $y = a(x-h)^2 + k$. Identify the coordinates of its turning point. $\frac{4}{3} - \frac{23}{3} + \frac{4}{4} = x^2 - 4x + 4$ $\frac{4}{3} - \frac{1}{4} = (x-2)^2$ $\frac{4}{3} - \frac{1}{4} = (x-2)^2$ $\frac{4}{3} - \frac{12}{3} + \frac{21}{3}$ $\frac{4}{3} - \frac{12}{4} = (x-2)^2$ $\frac{4}{3} - \frac{12}{3} + \frac{21}{3}$ $\frac{4}{3} - \frac{12}{4} = (x-2)^2$

Which of the following values of x solves: $(0.5)^{3x+2} = 8^{5x-4}$? $(\frac{1}{2})^{3x+2} = 8^{5x-4}$?

 $(1) = \frac{2}{3}$

(3)3

 $(2^{-1})^{3x+2} = 8^{5x-4}$

(4)7

 $(2)^{-3x-2} = (2^3)^{5x-4}$

v = 5/9

If $f(x) = 50(0.92)^x + 75$ then which of the following values of x solves the equation f(x) = 90? 90=50 (.92)x+75 (1) 12.1(3)15.815 = 50 (.92)x .3=(.92)x (2) 14.4X=14.439 .. (4) 18.310g.92 (-30) = X If \$500 is placed in a savings account that earns a 6% nominal interest compounded monthly, then which of the following represents the account's worth after 10 years? A=P(1+ 5)nt A=500 (1+ 06) 12(10) (1) \$800.00 (3) \$895.42 (2)\$873.29 (4) \$909.70 A = 909.70 Given the function $f(x) = \log_2(2x-8)$, which of the following values of x is not in the domain of the function? (1) x = 5(3) x = 8(2) x = 2(4) x = 20In a mortgage the monthly payment, m, is calculated using the formula: $m = \frac{P(\frac{r}{12})(1+\frac{r}{12})^n}{(1+\frac{r}{12})^n-1}$ where P is the principal of the loan, n is the number of payments and r is the monthly mortgage rate. 30 yrs -> 360 months r=05 (a) If a loan had a principal amount of P = \$250,000 and a yearly rate of 5%, what monthly payment would be needed to pay off the loan in exactly 30 years? Show how you arrived at your answer. m = 250000 (.05) (1+ .05) 360

$$m = 250000 \left(\frac{.05}{12}\right) \left(1 + \frac{.05}{12}\right)^{360} - 1$$

$$m = 1342.05$$

(b) If the principal was still \$250,000, but the yearly rate was 6%, determine algebraically the number of years it would take to pay off the loan with a monthly payment of \$2,000. Show your work. Round to the nearest tenth of a year.

$$\frac{2000 = 250000(\frac{.06}{12})(1 + \frac{.06}{12})^{n}}{(1 + \frac{.06}{12})^{n} - 1}$$

n=196.656 (months)