1. Consider the differential equation $\frac{d y}{d x}=\frac{(3 y+1)^{2}}{x}$ with a particular solution $y=f(x)$ having an initial condition $y(1)=0$. Use the equation of the line tangent to the graph of f at the point $(1,0)$ in order to approximate the value of $f(1.2)$.
2. Select the differential equation that matches the given slope field.

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{x^{2}}{y-2} \\
& \frac{d y}{d x}=-\frac{x^{2}}{(y-2)^{2}} \\
& \frac{d y}{d x}=\frac{x}{y-2} \\
& \frac{d y}{d x}=x^{2}(y-2)^{2}
\end{aligned}
$$

3. The regions A, B, C, and D in the figure below are bounded by the graph of the function f and the x-axis. The area of region A is 8 , the area of region B is 6 , the area of region C is 14 , and the area of region D is 10 . What is the average value of f on the interval $[-4,8]$ in simplest form?

4. The regions A, B, C, D, and E in the figure below are bounded by the graph of the function f and the x-axis. The area of region A is 8 , the area of region B is 4 , the area of region C is 9 , the area of region D is 14 , and the area of region E is 16 . What is the value of $\int_{-8}^{0} f(x) d x$?

