1. Using the graph below, which of the following statements must be true?
I. $\quad f(x)$ is continuous at $\mathrm{x}=1$
II. the limit of $f(x)$ as x approaches 1 equals 1
III. the limit of $f(x)$ as x approaches 4 equals 2

(A) III only
(B) I and II only
(C) II and III only
(D) I and III only
(E) I, II, and III
2. $\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x}=$
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) ∞
(E) 0
3. Let f be a continuous function such that $\int_{-1}^{0} f(x) d x=-1$ and $\int_{-3}^{0} f(x) d x=-10$. What is the value of $\int_{-1}^{-3} f(x) d x ?$
4. A particle moves along the x-axis so that at time $t \geq 0$ its position is given by $x(t)=3 t^{3}-9 t^{2}-40$. Determine the total distance traveled by the particle from $0 \leq t \leq 4$.
5. Given the function $f(x)=-5 x^{4}+30 x^{2}$, determine all intervals on which f is both increasing and concave down.
