1. Using the graph below, which of the following statements must be true?



II. the limit of 
$$f(x)$$
 as x approaches 1 equals 1

III. the limit of 
$$f(x)$$
 as x approaches 4 equals 2



$$2. \lim_{x\to 0} \frac{\sin(x)}{2x} =$$

$$\frac{1}{2}$$

Let f be a continuous function such that  $\int_{-1}^0 f(x)\,dx=-1$  and  $\int_{-3}^0 f(x)\,dx=-10$ . What is the value of  $\int_{-1}^{-3} f(x)\,dx$ ?

A particle moves along the x-axis so that at time  $t \geq 0$  its position is given by  $x(t) = 3t^3 - 9t^2 - 40$ . Determine the total distance traveled by the particle from  $0 \leq t \leq 4$ .

Given the function  $f(x) = -5x^4 + 30x^2$ , determine all intervals on which f is both increasing and concave down.