
X = -3 + 15

Monday	Tuesday	Wednesday	Thursday
Tim earns \$120 plus \$30 for each lawn he mows. a) Write an inequality to represent how many lawns he needs to mow to make at least \$310. 30 × + 20 > 310 b) Solve the inequality 30 × + 120 > 310 -120 -120 30 × 7, 190 30 30 x> 6, 3	The function $f(x) = 8.25x$ models the amount of money that Jim earns for each hour of work. 1. What does the value "x" stand for? 2. What is the meaning of the coefficient of x? \$ 8.25 per 3. What does the lack of a constant tell us?	Rental Store A charges \$10 to rent a power tool plus \$2 per hour. Store B charges by the function $f(x) = 15 + 1.5x$ Which store has the largest charge per hour? A: $2x + 10$ B: $135x + 15$	A doctor develops the model y = 36.57x + 4 for the number of words a toddler can speak (x) versus the months that have passed since they started speaking (y). Interpret what the 36.57 and the 4 means in the context of the problem.
Flawns	Oak as the assessing	Fi16(0)	1 0 0 0
Factor Completely: $h^4 - 81$ $(h^2 - 9)(h^2 + 9)$ $(h+3)(h-3)(h^2 + 9)$	Solve the equation $2x - 9y = -27 \text{ for } y.$ $-2x \qquad -2x$ $-9y = -2x - 21$ $-2x - 2x - 21$ $-2x - 2x$	Find f(-3) 10 8 6 4 2 10.8 6 4 2 2 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10	S this function linear or exponential?
Find the value of c that completes the square.	Factor the problem to the left	Write the problem to the left in the form of $(x \pm \underline{\hspace{1cm}})^2$	Write the function in vertex
$x^{2} - 18x + c \qquad \qquad$	(x-9)(x-9)	$(\chi-9)^2$	form $(x \pm \underline{\ })^2 \pm c$ by completing the square $x^2 + 3x + 1 = 0$
C=81	$(x-9)^{-}$		$(x+3)^{2}=15$ $(x+3)^{2}=15$ x+3=15

Is this function growing linearly or exponentially?

expon.

Use the functions f(x) = 5x - 3 g(x) = 2x - 4for the following:

$$f(x) + g(x)$$

$$5x - 3$$

$$+ 2x - 4$$

$$7x - 7$$

$$g(x) - f(x)$$

$$(2x - 4) - (5x - 3)$$

$$2x - 4$$

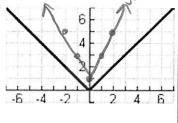
$$-5x + 3$$

Use the quadratic formula to solve

$$3x^{2} - 4x - 1 = 0$$

$$\times = 4 \pm \sqrt{(-4)^{2} - 4(3)(4)}$$

$$2(3)$$


 $X = 4 \pm \sqrt{28}$ $X = 4 \pm 2\sqrt{7}$ $X = 2 \pm i\sqrt{7}$ $X = 2 \pm i\sqrt{7}$

Use the functions f(x) = 5x - 3 g(x) = 2x - 4for the following:

f(x) subtracted from g(x) (2x-4)-(5x-3)2x-4

 $\frac{-5x+3}{-3x-1}$

Below is a graph of y = |x|. Graph the function y = 2|x| + 1 on the same graph.

Use the quadratic formula to solve

$$7x = x^2 + 10$$

$$x = 7 \pm \sqrt{(-1)^2 - 4(1)(10)}$$

$$x = 7 \pm \sqrt{(-1)^2 - 4(1)(10)}$$

$$x = 7 \pm 3$$
 $x = 7 \pm 3$
 $x =$

Use the functions f(x) = 5x - 3 g(x) = 2x - 4for the following:

$$f(x) \cdot g(x)$$

$$(5x-3)(2x-4)$$

$$10x^{2}-20x$$

$$-(6x+12)$$

10x2-26x +12

Find the area of the rectangle

$$(x-3)(x+2)$$

 $x^2 + 2x$
 $-3x - 6$

My Progress

MONDAY
of questions ____
correct ____
I need more help
with... ____

TUESDAY
of questions _____
correct ____
I need more help
with... ____

of questions ____ # correct ____ I need more help with...

WEDNESDAY

of questions ____ # correct ____ I need more help with... ____

THURSDAY