Inequalities

Symbol	Meaning	Graph
$<$	Less than	\longleftrightarrow
$>$	Greater than	\longrightarrow
\leq	Less than or equal to	\longleftrightarrow
\geq	Greater than or equal to	\longrightarrow

- If you multiply or divide by a negative, FLIP the inequality sign
- Write the variable on the LEFT

Compound Inequalities

- 1 means AND
two points are connected by a line segment
arrows point at each other
EXAMPLES:
$[-3,9)$
$7<x \leq 25$
$x>-12 \wedge x<0$
- V means OR
arrows point different directions EXAMPLES:
$(-\infty,-2) \vee[5, \infty)$
$x<-3 \vee x \geq 7$

Interval Notation

() for open points, >or $<$ [] for closed points, \geq or \leq ∞ and $-\infty$ always use ()

Order of Operations		
P	Parenthesis/Groupings (absolute value, brackets	G
E	Exponents/Square Roots (whichever comes first)	E
$\begin{aligned} & \hline M \\ & D \end{aligned}$	Multiply/Divide (whichever comes first)	M
$\begin{aligned} & \text { A } \\ & \text { S } \end{aligned}$	Add/Subtract (whichever comes first)	S

IRRATIONAL NUMBERS
any number that CAN'T be written as a fraction

- Decimals that don't repeat and don't terminate (I.23462...)
- The square roots of non-perfect square $(\sqrt{10})$
rational \bullet rational $=$ rational rational + irrational $=$ irrational rational • irrational = irrational

Use your
calculator to
help :)

Solving Equations and Inequalities

I. Distribute (when necessary)
2. Get rid of fractions by multiplying by the denominator (when necessary)
3. Sort (variables to the left, constants to the right)
4. Combine like terms
5. Divide by the coefficient
6. Check using your calculator

Cross multiply to solve proportions

Checking Answers Using the TI-Nspire
I. Store the value you got for the variable into the variable
$x=2$ looks like 2 STO x
for $x>7$ you could use 8, 9,10 , etc. but NOT 7
Press CTRL \rightarrow VAR to get the STO key
2. Type the whole equation or inequality into your calculator and press enter
3. TRUE means you solved it correctly, FALSE means you made a mistake

Differences between Equations, Expressions and Equations

- Expressions DO NOT have $=,>,<, \geq$, or \leq symbols
- Equations ALWAYS have $=$
- Inequalities have $>,<, \geq$, or \leq symbols
- A TERM is an expression joined by multiplication or division $E X: x, 2 x y, A B \quad E X: 2 x+1$ is 2 TERMS

Intepreting Solutions

I - If you solve an equation and your solution is a variable equal to a number, you have ONE solution. $E X$: $x=-3$

- If you salve an inequality, be careful of what actually is a solution. It must make the inequality statement TRUE. EX: $x<4$ the number 4 NOT a solution because 4 is not less than 4 but $3,2,1,-50$, etc. are all solutions.
- If you solve an equation and your solution has no variables and neither side is the same, you have NO solutions. EX: 7 $=-2$
- If you solve an equation and both sides of your solution are the same, you have INFINITELY many solutions.

Properties of Real Numbers

- The Commutative Property: Addition OR Multiplication
- Changes the order of the terms
- $a+b=b+a \quad$ or $\quad a \cdot b=b \cdot a$
- The Associative Property: Addition OR Multiplication
- Changes groupings
- $(a+b)+c=a+(b+c)$ or $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
- The Identity Property
- After the operation, the number (or variable) stays the same
- Addition - Always 0 - Multiplication - Always I
- $\quad a+0=a$
- $a \cdot 1=a$
- The Inverse Property
- Trying to get back to the identity
- Addition - always the
- Multiplication - always the reciprocal of a
"opposite" sign of a
- $a \cdot \frac{1}{a}=1$
- Add to get 0
- Multiply to get I
- The Distributive Property
- gets rid of parenthesis through multiplication
- $a(b+c)=a b+a c$ or $a(b-c)=a b-a c$
- You can also pull out a variable as well (backwards distributing/factoring)
- The Properties of Equality: Addition and Multiplicative
- if you add the same number to both sides of an equation, the sides remain equal
- if you multiply (or divide) a number to both sides of an equation, the sides remain equal

Converting Units

- Always write as a form of I EX: $\frac{1 \text { foot }}{12 \text { inches }}$
- Know your conversions
- Make the units "cross cancel" when converting
- EXAMPLE: Convert $2 \mathrm{ft} / \mathrm{sec}$ to inches per minute

$$
\frac{2 \mathrm{ft}}{1 \mathrm{sec}} \cdot \frac{12 \mathrm{in}}{1 \mathrm{ft}} \cdot \frac{60 \mathrm{sec}}{1 \mathrm{~min}}=1,440 \mathrm{in} / \mathrm{min}
$$

Solving Word Problems

I. Read and underline key info
2. Define variables/Draw a picture/ Make a table)
3. Write and solve an equation
4. Does your answer make sense?
5. Answer the question

Consecutive Integer: $x, x+1, x+2, x+3, \ldots$ Consecutive EVEN: $x, x+2, x+4, x+6, \ldots$ Consecutive ODD: $x, x+2, x+4, x+6, \ldots$
Age - set up a table
Money - use parenthesis and never forget to multiply the quantity by the value of the coin

Perimeter - draw a picture
Pythagorean Theorem - use $a^{2}+b^{2}=c^{2}$

- If you don't know 3 things you need 3 LET statements, 2 things 2 LET statements, etc.
- Always define variables first - that will help you get an equation or inequality

Equivalent Equations
 \rightarrow Re-writing formulas

- Follow the same steps as solving a regular equation
- Use INVERSE OPERATIONS
- Get variable specified ALONE
- Answers will usually look messy

EX: Solve for r in terms of V and h.
$V=\pi r^{2} h$ divide both sides by πh
$\frac{V}{\pi h}=r^{2}$ take square root of both sides
$\sqrt{\frac{V}{\pi h}}=r$ final answer ()

