unit 2 - Whats My Function? - study guide

Relations and Functions

\rightarrow Relation - a set of input and output values listed in ordered pairs

- Describes a relationship between two different sets of information
\rightarrow Function - a relation in which each element of the domain has one and only one element of the range associated with it
- For each x /input/domain there is one and only one y /output/range
EXAMPLE: $\{(1,3),(2,5),(6,3),(-2,1)\}$
NON-EXAMPLE: $\{(1,3),(2,5),(1,7)\}$

Ordered Pair/Point (x, y)

- On a graph, an ordered pair shows the position on a graph
- First number, x, is the horizontal coordinate $+\rightarrow,-\leftarrow$
- Second number, y, is the vertical coordinate $+\uparrow$. $-\downarrow$

Function Notation

- $f(x)$ is the name of the function
- Use substitution to evaluate a function
- $\quad x$ is the input; $f(x)$ is the output

Is it a function?

 If it is...Every x-value has only ONE y-value!!!!!!!!!!!!

> Vertical Line Test If any vertical line can be drawn through the graph and pass through only one or no points, then your graph IS a function.

Different Ways to View a Function
EXAMPLE: $f(x)=2 x+1$ with a domain of $\{1,2,3,4\}$

Table		
\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\mathbf{2 \boldsymbol { x } + \mathbf { 1 }}$	$\boldsymbol{f}(\boldsymbol{x})$
1	$f(1)=2(1)+1$	3
2	$f(2)=2(2)+1$	5
3	$f(3)=2(3)+1$	7
4	$f(4)=2(4)+1$	9

Graph

Translating Functions Basics
Function: $f(x)$
$f(x)+3$ means...move $f(x)$ up 3 $f(x)-3$ means...move $f(x)$ down 3 $f(x+3)$ means...move $f(x)$ left 3 $f(x-3)$ means...move $f(x)$ right 3 $-f(x)$ means...reflect $f(x)$ over x-axis $3 f(x)$ means... $f(x)$ is thinner $\frac{1}{3} f(x)$ means... $f(x)$ is wider

Notations \rightarrow Interval () for open points/doesn't include [] for closed points/includes ∞ and $-\infty$ always use ()	Parent Functions	 $f(x)=x$ linear	$f(x)=\|x\|$ absolute value	$f(x)=x^{2}$ quadratic
\rightarrow Inequality $<>$ for open points/doesn't include $\leq \geq$ for closed points/includes ∞ and $-\infty$ always use $<>$	$f(x)=x^{3}$ cubic	$f(x)=2^{x}$ exponential	$f(x)=\sqrt{x}$ square root	$f(x)=\sqrt[3]{x}$ cube root

Important Vocabulary

maximum - the highest Y -VALUE on a graph
minimum - the lowest Y-VALUE on a graph
domain - the set of all of x-values (LEFT to RIGHT)
range - the set of all of y-values (DOWN to UP)
increasing - the INTERVAL where the X-VALUES have a positive slope
decreasing - the INTERVAL where the X-VALUES have a negative slope
turning point - where a graph changes slopes
\boldsymbol{x}-intercept - the point(s) where the graph crosses the \boldsymbol{x}-axis
zeros -the x-coordinate of the x-intercept
\boldsymbol{y}-intercept - the point(s) where the graph crosses the y-axis
linear - a graph that makes a straight line
non-linear - a graph that is not a straight line
axis of symmetry - the line that divides a graph into two mirror images of each other.
slope/average rate of change - change in y-values divided by the change in x-values
end behavior - how a graph begins or ends (EX: as x
increases, y decreases)
asymptote: a line that a graph approaches but won't touch

Interpreting a Function

A. Find $\boldsymbol{f}(-5)$

Means... find y when $\mathrm{x}=-5$
ANSWER: $y=-3$
B. Find all values of x when $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2}$

Means... find x when $\mathrm{y}=2$
ANSWER: $x=3$

C. What is the maximum of $\boldsymbol{f}(\boldsymbol{x})$?

Means... find the highest y-value
ANSWER: 2
D. What is the minimum of $\boldsymbol{f}(\boldsymbol{x})$?

Means... find the lowest y-value
ANSWER: - 4
E. What is the domain of $\boldsymbol{f}(\boldsymbol{x})$ written in inequality notation?

Means... how far left to right does the graph go
ANSWER: $-5 \leq x \leq 4$
F. What is the range of $\boldsymbol{f}(\boldsymbol{x})$ written in interval notation?

Means... how far down to up does the graph go
ANSWER: $[-4,2]$
G. What are the turning points of $\boldsymbol{f}(\boldsymbol{x})$?

Means... where does the graph change from + to - slope or vice versa ANSWER: $(0,0),(1,-4)$, and $(3,2)$
H. Where is the graph increasing? decreasing?

Means... going from left to right (x), is the graph going up or down
ANSWER: increasing: $[-5,0)$ and $(1,3)$ decreasing: $(0,1)$ and $(3,4]$

The number OUTSIDE of the parenthesis moves the function UP

+ or DOWN EXAMPLES:
$f(x)=2^{x}+4$ up 4
$f(x)=2^{x}-3$ down 3

The number INSIDE of the parenthesis moves the function LEFT + or RIGHT -
*** opposite of what you think! EXAMPLES:
$f(x)=|x-1|$ right 1
$f(x)=|x+3|$
 left 3
The number IN FRONT of the parenthesis reflects the function over the x-axis if - , makes wider if a fraction, stretches if bigger than I EXAMPLES:
 $f(x)=-x^{2}$ reflects over x-axis $f(x)=2 x^{2}$ narrower

$$
f(x)=\frac{1}{3} x^{2}
$$

Other Functions Examples

What is the range of the function $f(x)=2 x+3$ over the domain
$\{0,1,2,3\}$?
ANSWER: $\{3,5,7,9\}$
What domain should I use for this situation? A parking garage charges the customer $\$ 2$ every half hour.
ANSWER: $\left\{0, \frac{1}{2}, 1,1 \frac{1}{2}, 2,2 \frac{1}{2}, \ldots\right\}$
Given $f(x)=2 x+1$
\rightarrow find $f(3)$
ANSWER: $f(3)=2(3)+1=7$
\rightarrow find x when $f(x)=5$
ANSWER: $5=2 x+1 \rightarrow x=2$

