unit 4 －Exponertiou Functions－stay guide

Parent Function

domain：$-\infty<x<\infty$ range：$y>0$
y－intercept：$(0,1)$
zeros：none
asymptote： $\mathrm{y}=0$ increasing：$-\infty<x<\infty$

Evaluating Exponential Functions

 EXAMPLE：If $f(x)=20\left(\frac{1}{2}\right)^{x}$ find $f(2)$ ．\rightarrow SOLUTION：$f(2)=20\left(\frac{1}{2}\right)^{2}=20\left(\frac{1}{4}\right)=5$ So．．．$f(2)=5$
．．．which means $f(x)$ passes through the point $(2,5)$ ．

Linear versus Exponential

 LinearLook for addition or subtraction of y－values

Has a constant rate of change：
Slope $=\frac{\mathrm{y} \text { change }}{\mathrm{x} \text { change }}=\frac{-3}{1}=-3$
Has a y－intercept at（0，8）
－Equation：$y=m x+b$
$\mathrm{m}=$ slope and $\mathrm{b}=\mathrm{y}$－intercept

$$
y=-3 x+8
$$

Exponential
Look for multiplication or division

Does NOT have a constant rate of change
Has a growth factor of 3
Has y－intercept at（0，2）
－Equation：$y=a(b)^{x}$
$\mathrm{a}=$ initial value and $\mathrm{b}=$ growth factor

$$
y=2(3)^{x}
$$

Average Rate of Change

－NEED 2 POINTS
－The SLOPE of a line that passes through two points of a function
－$\frac{y \text { change }}{x \text { change }}$
EXAMPLE：Given the function $f(x)=3(2)^{x}$ ，find the average rate of change over the interval $2 \leq x \leq 4$ ．
\rightarrow SOLUTION：

x	$f(x)$
2	12

$\times 2\left(\begin{array}{c|c}\frac{2}{4} & 12 \\ \hline 48\end{array}\right)^{2}+36$ a．r．O．C $=\frac{36}{2}=18$
－ー・ー・ー・ー・ー・ー・ー・

Laws of Exponents

－Multiplying with the same base：ADD powers

$$
x^{a} \bullet x^{b}=x^{a+b} \quad \text { EXAMPLE: } 5^{3} \bullet 5^{7}=5^{10}
$$

－Dividing with the same base：SUBTRACT powers

$$
\frac{x^{a}}{x^{b}}=x^{a-b} \quad \text { EXAMPLE: } \frac{x^{9}}{x^{5}}=x^{4}
$$

－Power to power：MULTIPLY powers

$$
\left(x^{a}\right)^{b}=x^{a \cdot b} \quad \text { EXAMPLE: }\left(2^{3}\right)^{5}=2^{15}
$$

－Anything to the FIRST power is ITSELF

$$
x^{1}=x \text { EXAMPLE: } 20^{1}=20
$$

－Anything to the ZERO power is ONE

$$
x^{0}=1 \quad \text { EXAMPLE: } 20^{0}=1
$$

－Negative exponents：re－write as $\frac{1}{1}$ the exponent to the positive power（it is not a negative number！！！）

$$
b^{-n}=\frac{1}{b^{n}} \quad \text { EXAMPLE: } 2^{-4}=\frac{1}{2^{4}}=\frac{1}{16}
$$

The number OUTSIDE the exponent moves the parent function UP + or DOWN EXAMPLES: $y=2^{x}-5$ down 5 asy. @y=-5 $y=2^{x}+3$ up 3 asy. @y $=3$ *the constant is the asymptote	The number INSIDE the power moves the parent function LEFT + or RIGHT - *** opposite of what you think! EXAMPLES: $y=2^{x-1}$ right \mid $y=2^{x+3} \text { left } 3$ *asymptote does not change	The BASE tells you if the function is INCREASING if $\boldsymbol{b}>\mathbf{1}$ DECREASING if $\mathbf{0}<\boldsymbol{b}<\mathbf{1}$ EXAMPLES: $y=1.5^{x}$ increasing $y=\left(\frac{3}{5}\right)^{x}$ decreasing
The number IN FRONT of the exponent reflects the function over the x-axis if - - the value changes the y -int. (must be $y=a(b)^{x}$ form)	EXAMPLES: $y=-2^{x}$ reflects over x-axis $y=3(2)^{x} \quad y$-intercept at 3	

EXAMPLES:
$y=2^{x}-5$ down 5 asy. @ $y=-5$ $y=2^{x}+3$ up 3 asy. @ $y=3$

The number IN FRONT of the
exponent

- reflects the function over the x-axis if -
- the value changes the y-int.
(must be $y=a(b)^{x}$ form)

The number INSIDE the power LEFT + or RIGHT -
*** opposite of what you think!
EXAMPLES:
$y=2^{x-1}$ right |
$y=2^{x+3}$ left 3
*asymptote does not change EXAMPLES:
$y=-2^{x}$ reflects over x-axis
$y=3(2)^{x} \quad y$-intercept at 3

The BASE tells you if the INCREASING if $\boldsymbol{b}>\mathbf{1}$ DECREASING if $\mathbf{0}<\boldsymbol{b}<\mathbf{1}$ EXAMPLES:
$y=1.5^{x}$ increasing $y=\left(\frac{3}{5}\right)^{x}$ decreasing

Growth: ADD	Decay: SUBTRACT
$y=a(1+r)^{t}$	$y=a(1-r)^{t}$
$a=$ initial amount	

$a=$ initial amount
$r=$ growth/decay rate as decimal $t=$ time
GROWTH EXAMPLE:
A population of bugs is growing at a rate of 5% per day. The initial population is 22 bugs.
Find a formula that models this situation. \rightarrow SOLUTION:
$100 \%+5 \%=105 \%$ as a decimal 1.05

$$
\text { So... } y=22(1.05)^{x}
$$

DECAY EXAMPLE:
A radioactive material that is initially 55 grams decays at a rate of 14% per day. Find a formula that models this situation.
\rightarrow SOLUTION:
$100 \%-14 \%=86 \%$ as a decimal is 0.86

$$
\text { So... } y=55(0.86)^{x}
$$

Geometric Sequences

Sequence means MAKE A TABLE

$$
a_{n}=a_{1} r^{n-1}
$$

$a_{n}=$ the $n^{\text {th }}$ term/any term
$n=$ term number
$a_{1}=$ initial value
$r=$ common ratio (growth/decay factor)

EXAMPLE:

Write a formula that can be used to find the $\mathrm{n}^{\text {th }}$ term of the sequence:

$$
20,10,5,2.5, \ldots
$$

Then find the 15 th term.

Percents Tips

- convert to a decimal \rightarrow move decimal 2 units left
- Increase means ADD to 100%
- Decrease means SUBTRACT from 100%

