Important Vocabulary

standard form: $y=a x^{2}+b x+c$ leading coefficient: the " a " in standard form roots/zeros/x-intercepts/solutions: the x-values of the x-intercepts, when $y=0$ vertex: the turning point of the parabola: max/min y-intercept: the point where the graph crosses the y -
axis, when $x=0$
axis of symmetry: the x-value of the vertex; $x=$ maximum: the highest y-value
minimum: the lowest y-value
concave up: vertex is a minimum
concave down: vertex is a maximum

Graphing on the TI-Nspire

In Graphing Scratchpad...

- ADD A FUNCTION

Press TAB, then \uparrow or \downarrow to change between functions

- CHANGE WINDOW

Pick \#'s: MENU $\rightarrow 4 \rightarrow$ ।
ZOOM FIT: MENU $\rightarrow 4 \rightarrow \mathrm{~A}$

Simplifying Radicals

I. Find the BIGGEST perfect square factor
2. Write as the product of 2 radicals
(make sure the perfect square is first)
3. Evaluate the perfect square

Perfect Squares: 1, 4, 9, 16, 25, 36, 49, 64, 8। $100,121,144,169,196,225, \ldots$
EXAMPLE: Simplify $x=3 \sqrt{48}$

$$
\begin{gathered}
x=3 \bullet \sqrt{16} \bullet \sqrt{3} \\
x=3 \bullet 4 \bullet \sqrt{3} \\
x=12 \sqrt{3}
\end{gathered}
$$

Factoring REVIEW

REPEAT UNTL FACTORED COMPLETELY

Different Forms of a Parabola

FORM	TELLS US	EXAMPLE
Standard Form	$a x^{2}$ - Opens: UP: a is + DOWN: a is - - NARROW: $a>1$ WIDE: $0<a<1$ - y-intercept: is the CONSTANT	$y=x^{2}+2 x-3$ \Rightarrow opens up $\mathrm{b} / \mathrm{c} x^{2}$ is positive $\Rightarrow y$-intercept at ($0,-3$)
Vertex Form	$a(x-h)^{2}+k$ - Opens: UP: a is + DOWN: a is - - NARROW: $a>1$ WIDE: $0<a<1$ - Vertex: $(-h, k)$ h is always OPPOSITE SIGN	$\begin{aligned} & \boldsymbol{y}=(\boldsymbol{x}+\mathbf{1})^{2}-\mathbf{4} \\ \Rightarrow \quad & \text { opens up b/c } \\ & \text { number in front } \\ & \text { of parenthesis is } \\ & \text { positive } \\ \Rightarrow & \text { vertex: }(-1,-4) \end{aligned}$
Factored Form	- roots/zeros set each factor $=0$	$\begin{gathered} y=(x-1)(x+3) \\ \Rightarrow \text { roots at } x=1 \\ \text { and } x=-3 \end{gathered}$

The SAME function written 3 different ways!

$$
\begin{gathered}
y=x^{2}+2 x-3 \\
y=(x+1)^{2}-4 \\
y=(x-1)(x+3)
\end{gathered}
$$

Completing the Square

- GOAL: Write in vertex form (or solve...found on back)
- Just re-writing: it should always be the SAME equation from start to end

EXAMPLE \# |
$y=x^{2}-8 x+22$
$y=x^{2}-8 x+22$
$y=x^{2}-8 x+22$
$y=x^{2}+16-16+22$
$y=(x-4)(x-4)-16+22$
$-4 x-4$
$y=(x-4)^{2}+6$
$y=x^{2}-8 x+22$
is the same as
$y=(x-4)^{2}+6$

EXAMPLE \#2
$0=-2 x^{2}+20 x-61$
$0=-2 x^{2}+20 x-61$
$0=-2\left(x^{2}-10 x+25\right)+50-61$
$\left.0=-2\left(x-5^{5} x x-5\right)^{7}\right)-11$
$0=-2(x-5)^{-5-11}$ $0=-2(x-5)^{2}-11$
$0=-2 x^{2}+20 x-61$
is the same as
$0=-2(x-5)^{2}-11$

Solving Quadratic Equations ~ Finding Roots/Zeros		
	Steps	Examples
	Graph to find the x-intercepts/roots ** Using the TI-Nspire: MENU $\rightarrow 6 \rightarrow$ I Do this for EVERY root	$y=x^{2}-4 x+3$
	I. Factor 2. Set each factor $=0$ 3. Solve to find roots	$\begin{gathered} y=x^{2}+7 x-18 \\ 0=x^{2}+7 x-18 \\ 0=(x+9)(x-2) \\ 0=x+9 \quad 0=x-2 \\ \boldsymbol{x}=-\mathbf{9} \quad \boldsymbol{x}=\mathbf{2} \\ \hline \end{gathered}$
	I. Move constant to other side 2. Take square root of both sides ($\pm!!!!$) ***use when there isn't a " $b x$ " term	$\begin{gathered} y=x^{2}-25 \\ 0=x^{2}-25 \\ 25=x^{2} \\ x=\sqrt{25} \\ x= \pm 5 \text { so... } \\ \boldsymbol{x}=-\mathbf{5} \text { and } \boldsymbol{x}=\mathbf{5} \end{gathered}$
	I. Write in vertex form 2. Move constant to other side 3. Take square root of both sides 4. Spit into 2 equations 5. Solve ***use only if you CAN'T factor \& when " b " is EVEN	$\begin{gathered} y=x^{2}+6 x-1 \\ 0=x^{2}+6 x-1 \\ 0=x^{2}+6 x+9-9-1 \\ 0=(x+3)^{2}-10 \\ 10=(x+3)^{2} \\ \pm \sqrt{10}=x+3 \\ x+3=+\sqrt{10} \quad x+3=-\sqrt{10} \\ \boldsymbol{x}=-\mathbf{3}+\sqrt{\mathbf{1 0}} \quad \boldsymbol{x}=-\mathbf{3}-\sqrt{\mathbf{1 0}} \\ \text { (in simplest radical form) } \end{gathered}$
	I. Identify a, b and c 2. Substitute and solve ***use only if you CAN'T factor and when " b " is ODD *** Using the TI-Nspire: MENU $\rightarrow 3 \rightarrow 3$	$\begin{gathered} y=x^{2}+4 x-3 \\ 0=x^{2}+4 x-3 \\ a=1 \quad b=4 \quad c=-3 \\ x=-\frac{4}{2(1)} \pm \frac{\sqrt{4^{2}-4(1)(-3)}}{2(1)} \\ x=-2+\frac{\sqrt{28}}{2} \quad x=-2-\frac{\sqrt{28}}{2} \\ \boldsymbol{x}=\mathbf{0 . 6} \quad \boldsymbol{x}=-\mathbf{4} .6 \end{gathered}$ (rounded to the nearest tenth)

Solving: Linear versus QuadratiG	
Linear: get x alone	Quadratic: set $=0$
$5 x-8+3 x=6(x-1)$	$x^{2}-7=x+5$
$5 x-8+3 x=6 x-6$	$x^{2}-x-7-5=0$
$5 x+3 x-6 x=8-6$	$x^{2}-x-12=0$
$-1 x=2$	$(x-4)(x+3)=0$
-1	$x-4=0 \mid x+3=0$
$x=-2$	$x=4 \mid$
$x=-3$	

Transforming Parabolas

OUTSIDE parenthesis (constant):
$\mathrm{UP}+$ or DOWN -
$g(x)=x^{2}+4$ up 4
$h(x)=x^{2}-3$
down 3

INSIDE parenthesis
LEFT + or RIGHT -
** opposite of what you think! ** $g(x)=(x+1)^{2}$ left \mid
$h(x)=(x-3)^{2}$
right 3

IN FRONT

reflects over the x-axis if -
wider if a fraction smaller than I
narrower if bigger than I
$g(x)=-x^{2}$
reflects over x -axis
$h(x)=2 x^{2}$
narrower
$j(x)=\frac{1}{3} x^{2}$
wider

How many roots?

Quadratic Formula

In the quadratic $0=a x^{2}+b x+c$, the roots can be found using...

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

