unit 7 - speciou functions - study gulide

Square Root Parent Function

$$
f(x)=\sqrt{x}
$$

domain: $x \geq 0$
range: $y \geq 0$
y-intercept: $y=0$
zero(s): $x=0$
asymptote: none
increasing: $x \geq 0$ decreasing: never

Cube Root Parent Function

$$
f(x)=\sqrt[3]{x}
$$

domain: $(-\infty, \infty)$ range: : $(-\infty, \infty)$ y-intercept; $y=0$ zero(s): $x=0$ asymptote: none increasing: $(-\infty, \infty)$ decreasing: never

Absolute Value Parent Function

$$
f(x)=|x|
$$

domain: $(-\infty, \infty)$
range: $y \geq 0$
 y-intercept: $y=0$ zero(s): $x=0$ asymptote: none increasing: $x>0$ decreasing: $x<0$

Average Rate of Change

- MAKE A TABLE!!!
- Need: TWO POINTS
- Find the points from a table, graph or substitution
- The SLOPE of a line that passes through TWO POINTS of a function
- $\frac{\text { change in } y}{\text { change in } x}$

EXAMPLE:

Given the function $f(x)=\sqrt{x}+1$, find the average rate of change over the interval

$$
+15\left(\frac{x}{16} \frac{y}{16} \frac{y}{5}\right)+3 \rightarrow \frac{50}{15}=\left\{\begin{array}{l}
\frac{1}{5} \\
\}
\end{array}\right.
$$

Is it a Function?

Piecewise Functions

\Rightarrow Be careful of

- open points
- does NOT include
- <or>
- closed points
- DOES include
- $\leq o r \geq$
\Rightarrow Can be linear or non-linear

EX: Graph the function:

$$
f(x)=\left\{\begin{array}{cc}
-x+2 & -\infty<x \leq-2 \\
x^{2} & -2<x<1 \\
|x-5| & 1 \leq x \leq 6
\end{array}\right.
$$

Then find:

$$
\begin{aligned}
& f(1)=-4 \\
& f(-2)=4 \\
& f(5)=0 \\
& f(0)=0
\end{aligned}
$$

Evaluating Functions Tips

Absolute Values

- The distance a number is from zero
- EX: Find y if $y=|x+5|$ when $x=-9$
$y=|x+5|=|-9+5|=|-4|=4$
So $y=4$ or the point ($-9,4$)

Square Roots

- CAN'T take the square root of a negative
- EX: Find y if $y=\sqrt{x}-3$ when $x=25$
$y=\sqrt{x}-3=\sqrt{25}-3=5-3=2$
So $y=2$ or the point $(25,2)$

Exponents

- When substituting, always use parenthesis
- EX: Find y if $y=x^{2}-1$ when $x=-3$
$y=x^{3}-1=(-3)^{2}-1=9-1=8$
So $y=8$ or the point $(-3,8)$

Cube Roots

- CAN take the square root of a negative
- EX: Find y if $y=\sqrt[3]{x}+1$ when $x=-8$
$y=\sqrt[3]{x}+1=\sqrt[3]{-8}+1=-2+1=-1$
So $y=-1$ or the point $(-8,-1)$

